Evolution of the Fot1 transposons in the genus Fusarium: discontinuous distribution and epigenetic inactivation.

نویسندگان

  • Marie-Josée Daboussi
  • Jean-Michel Davière
  • Stéphane Graziani
  • Thierry Langin
چکیده

To understand the evolution of Fot1, a member of the pogo family widely dispersed in ascomycetes, we have performed a phylogenetic survey across the genus Fusarium divided into six sections. The taxonomic distribution of Fot1 is not homogeneous but patchy; it is prevalent in the Fusarium oxysporum complex, absent in closely related sections, and found in five species from the most distant section Martiella. Multiple copies of Fot1 were sequenced from each strain in which the element occurs. In three species, the Fot1 nucleotide sequence is 98% identical to that from F. oxysporum (Fox), whereas nucleotide divergence for host genes is markedly higher: 11% for partial nuclear 28S rDNA and up to 30% for the gene encoding nitrate reductase (nia). In two species, sequence divergence of Fot1-related elements relative to Fox ranged from 7% to 23% (16% average). Most of the sequence differences (82%) were C-to-T and G-to-A transitions. These mutations are distributed throughout the Fot1 sequences, although they tend to be concentrated in the middle portion of the elements. Analysis of the local sequence context of transitions revealed a hierarchy of site preferences. These characteristics are typical of the repeat-induced point mutation process, first discovered in Neurospora crassa. The spotty distribution of Fot1 elements among species together with the high degree of similarity between Fot1 sequences present in distant species strongly suggests a case of horizontal transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transposition of the autonomous Fot1 element in the filamentous fungus Fusarium oxysporum.

Autonomous mobility of different copies of the Fot1 element was determined for several strains of the fungal plant pathogen Fusarium oxysporum to develop a transposon tagging system. Two Fot1 copies inserted into the third intron of the nitrate reductase structural gene (niaD) were separately introduced into two genetic backgrounds devoid of endogenous Fot1 elements. Mobility of these copies wa...

متن کامل

Recovery of Fusarium oxysporum Fo47 Mutants Affected in Their Biocontrol Activity After Transposition of the Fot1 Element.

ABSTRACT To investigate the biocontrol mechanisms by which the antagonistic Fusarium oxysporum strain Fo47 is active against Fusarium wilt, a Fot1 transposon-mediated insertional mutagenesis approach was adopted to generate mutants affected in their antagonistic activity. Ninety strains in which an active Fot1 copy had transposed were identified with a phenotypic assay for excision and tested f...

متن کامل

کانی شناسی و ژئوشیمی کانسنگ‌های لاتریتی پرمین در شرق شاهین‌دژ، استان آذربایجان غربی

East of Shahindezh (south of West Azarbaidjan province), as a part of Irano-Himalayan karst bauxite belt, comprises discontinuous layers and lenses of bauxite, laterite, and kaolin within the Ruteh carbonate formation (Middle- Upper Permian). The XRD analyses show that the lateritic ores have rather simple mineralogy, and consist of hematite, boehmite, and kaolinite as major phases accompanied ...

متن کامل

An Overview of the Epigenetic Modifications of Gene Expression in Tumorigenesis

The five leading causes of cancer-related deaths are lung (1,760,000 deaths), colorectal (862,000 deaths), stomach (783,000 deaths), liver (782,000 deaths), and breast (627,000 deaths) cancers. Epigenetic changes can alter chromatin compaction, leading to the regulation of geneexpression without changing the primary DNA sequence.Epigenetic mechanisms are normally involved incellular processes s...

متن کامل

Transposons and their application in plant pathology

Prokaryote, viruses, and eukaryotes chromosomes contain fragments of DNA can move and migrate to other parts of the chromosome calling as Transposition and play an important role in new combinations of gene production. DNA fragments carrier the genes or transposons are the transposable elements that may called gene mutant also. Transposons can move to another position of the same chromosome or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 19 4  شماره 

صفحات  -

تاریخ انتشار 2002